Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biotechniques ; 69(2): 108-112, 2020 08.
Article in English | MEDLINE | ID: covidwho-1041501

ABSTRACT

The outbreak of viral pneumonia caused by the novel coronavirus SARS-CoV-2 that began in December 2019 caused high mortality. It has been suggested that the main protease (Mpro) of SARS-CoV-2 may be an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. Remdesivir, ritonavir and chloroquine have all been reported to play a role in suppressing SARS-CoV-2. Here, we applied a molecular docking method to study the binding stability of these drugs with SARS-CoV-2 Mpro. It appeared that the ligand-protein binding stability of the alliin and SARS-CoV-2 Mpro complex was better than others. The results suggested that alliin may serve as a good candidate as an inhibitor of SARS-CoV-2 Mpro. Therefore, the present research may provide some meaningful guidance for the prevention and treatment of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Cysteine/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Antimalarials/pharmacology , Betacoronavirus/enzymology , Chloroquine/pharmacology , Coronavirus 3C Proteases , Cysteine/pharmacology , Cysteine Endopeptidases , Molecular Docking Simulation , Ritonavir/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL